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Dynamical squeezing in quantum mechanics 

Gebhard Grub1 
lnstitut fur Theoretische Physik, Universitat Innsbruck, A-6020 Innsbruck, Austria 

Received 13 February 1989 

Abstract. The time evolution orbits of Gaussian vectors under a harmonic oscillator 
dynamics are computed and discussed. The generic case is shown to be this: a minimum 
uncertainty vector, which is coherent with respect to a harmonic oscillator Hamiltonian 
with smaller frequency than the one of the driving Hamiltonian, evolves into a minimum 
uncertainty vector with reduced position variance for exactly two discrete instants of time 
per period. The results are applied to the case of a perturbing frequency jump in the 
driving harmonic oscillator Hamiltonian. The total transition probability to the excited 
(unperturbed) oscillator levels from the ground-state vector is computed. 

1. Introduction and conclusions 

Wavepackets, whose momentum and position variance saturate Heisenberg’s uncer- 
tainty relation, i.e. obey (AP),(AQ)@= h/2,  were introduced in the early days of 
quantum mechanics in order to simulate classical conditions as closely as possible [ 11. 
Meanwhile among these ‘quasiclassical’ vectors the subsets of those with identical 
frequency parameters have gained more practical importance as the ‘coherent states’ 
of the electromagnetic single-mode radiation field [2]. Recently a class of time evol- 
utions has been constructed [3], which evolve for all times every quasiclassical vector 
into a quasiclassical one and decrease its position variance. Completely independent 
from any dynamics, a quasiclassical vector, whose position variance is less than the 
position variance of a certain quasiclassical reference vector, is called ‘squeezed’ with 
respect to the reference vector [4-81. ( In  the context of quantum optics the vacuum 
vector is taken as the universal reference standard.) The time evolutions presented in 
[3] can thus be said to induce ‘dynamical squeezing’ in the sense that the later of two 
vectors on a curve, which is generated through the time evolution of a quasiclassical 
initial vector, is squeezed relative to the earlier one. The way this goal is achieved in 
[3] is as follows. Take as the family of time evolution operators from time 0 to time 
t an arbitrary (differentiable) curve U [ p ( f ) ]  through the one-parameter Lie group of 
unitary Bogoliubov transformations, which are defined by 

The function p ( t )  is chosen differentiable, increasing and strictly positive with ~ ( 0 )  = 1. 
Obviously, position variances decrease. Quasiclassical vectors remain quasiclassical 
for all times under a time evolution of this kind, since the product (AP)@t, l (AQ)@(, l  
is constant in r for all initial vectors O(0) with well defined P and Q variances 
( @ ( t ) : =  U[p(t)]@(O)).  (The interesting problem of how such a squeezing dynamics 
can be realised in the laboratory seems to be unresolved.) 

0305-4470 8’1 163243 - 1OSO2 50 1989 IOP Publishing Ltd 3243 
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Due to the fact that the squeezing Bogoliubov transformations given above are not 
generated by a harmonic oscillator Hamiltonian the authors of [3] deny the very 
possibility of inducing dynamical squeezing through a harmonic oscillator dynamics 
(with a generally time-dependent frequency parameter). Obviously, the previously 
described curves passing through the set of squeezing Bogoliubov transformations lead 
to decreasing ( A Q ) @ ( , ,  not only for all quasiclassical initial vectors but for all vectors 
in the Hilbert space (for which (AQ)eco, is finite). This, however, is an unnecessarily 
restricted way of inducing squeezing dynamically, as the notion of squeezing refers to 
pairs of quasiclassical vectors only. There is no need even to have all quasiclassical 
initial vectors squeezed by one and the same dynamics. 

In this paper I relax the too-rigid notion of dynamical squeezing of [3] and I prove 
that a harmonic oscillator dynamics induces squeezing on a set of quasiclassical vectors, 
though not on all. The phenomenon does not take place at all times but at certain 
discrete ones. In order to see this, the action of an oscillator dynamics on the set of 
Gaussian vectors (as defined precisely in definition 2.1) is computed explicitly. The 
set of Gaussian vectors contains the quasiclassical ones as a subset and is invariant 
under the harmonic oscillator time evolution. Thus closed curves are generated within 
the set of Gaussian vectors. These orbits are given in proposition 4.1. It turns out that 
every orbit either remains for all times within the set of vectors, which are coherent 
with respect to the driving dynamics, or else passes during one oscillator period 
T = 2 r / w  exactly four times through the set of quasiclassical vectors. For a curve of 
the latter type the time dependence of the momentum and position variances along 
the orbit is given in example 4.1. If the initial vector at t = 0 is the ground-state vector 
of a harmonic oscillator Hamiltonian with frequency U ' ,  which can be assumed without 
loss of generality, and if the time evolution is generated by the harmonic oscillator 
Hamiltonian with the frequency w > w '  (and the same mass parameter), then (AI'),  
and ( A Q ) ,  oscillate with a period r / w  between the following bounds: 

<(AI'):<- '"' ( 5)2 = (AI'):,,, . hmw' 
(AI');=- 

2 2 

In accordance with intuition the position distribution is contractive for w > U ' .  Only 
at the times w t  E & ~ Z  is the Heisenberg relation saturated: ( A P ) , ( A Q ) ,  = h / 2 .  This is 
when the orbit passes through the set of quasiclassical vectors. Equations (1.1) and 
(1 .2)  demonstrate that the vector at time t = r / 2 o  is squeezed relative to the one at 
t = O  or, more specifically, it is coherent with respect to the harmonic oscillator 
Hamiltonian with frequency w ( w / w ' )  and the same mass. After one half of the oscillator 
period, t = r / w ,  the orbit passes through the same set of coherent vectors it started 
from, but in general at a different point, as the position and momentum expectation 
values have the period 2 r / w .  At t = 3 ~ / 2 w  the orbit passes through the same set of 
coherent vectors as at t = ~ / 2 w  and finally it closes at t = 2 x / w .  

Section 2 contains the precise definitions of Gaussian and quasiclassical vectors 
and those of their properties which I need to compute their time evolution under a 
harmonic oscillator dynamics in 8 4. The auxiliary material on Bogoliubov transforma- 
tions is listed in 9 3.  (Sections 2 and 3 contain, perhaps modulo the degree of formal 
precision, mainly well established results and are intended as a concise repository of 
formulae relevant to 88 4 and 5.) As an application of the harmonic time evolution 
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of Gaussian vectors, the problem of exciting the higher levels of an oscillator by means 
of a perturbing frequency jump is analysed in 0 5. 

2. Gaussian vectors 

Let a Hilbert space X with scalar product (. , . )  be given and let an irreducible 
representation of the canonical commutation relations (CCR) be operative in X: 

[P, Q] = -ihL (2.1) 

X:= L*(R) (Q@)(x) := x@(x) (P@)(x)  := -ih{d@/dx}(x). (2.2) 

For illustration the x-space representation of the CCR will be used: 

Dejnition 2.1. A vector @E X is called Gaussian with respect to a representation P 
and Q of the CCRG 3( p ,  q )  E R2, 3 A  E Q) with Re A > 0 such that 

(2.3) @ = T [ p ,  q, A]:=  exp[-i(qP-pQ)/h]9[0,0, A ]  

(2.4) 

holds. G(P, Q )  := {9[ p ,  q, A]: ( p ,  q )  E R2, A E @, Re A > 0) denotes the set of vectors 
which are Gaussian relative to P and Q. 

Notice that the vectors 9 [ p ,  q, A ]  are determined through definition 2.1 uniquely 
up to an unspecified complex factor of modulus equal to 1 and that ( p ,  q, A ) # ( p ' ,  q ' ,  A ' )  
implies 9 [ p ,  q, A ]  f eis9[p ' ,  q', A' ]  for all S in [0, 27r). Thus the parameters p ,  q, A, 
constitute a one-to-one parametrisation of the unit rays associated with G(P, Q )  in 
contrast to the one given in [6] for the same set of rays. The crucial property of the 
boost and translation operator which maps 9 [ 0 ,  0, A ]  onto 9 [ p ,  q, A ]  is listed in 
lemma 2.1. 

Lemma 2.1. V( p ,  q )  E Rz hold the equations: 

Example 2.1. The ground-state vector of the translated and boosted harmonic oscillator 
Hamiltonian (P  -p)*/2m + mu2(  Q - q)*/2 is given by 9( p,  q, A = h/mo).  This follows 
from lemma 2.1. 

Example 2.2. Equation (2.7) displays the x-space representation of 9 [ 0 , 0 ,  A]:  

9 [ 0 , 0 ,  A](x) = N ( A )  exp(-x2/2A) 
114 

N(A):=ei6 (:Re(A-')) (2.7) 

with 6 E [0,27r) and the complex function z " ~  cut along O >  z E R. 

vectors, can be read off. 
From proposition (2.1) the significance of the parameters, which label the Gaussian 
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Pro05 The proof proceeds in full analogy to the well known case of real A. Equation 
(2.8) follows from the unitarity of exp[-i(qP-pQ)/h]. Due to lemma 2.1 it is 
sufficient to verify the equations (2.9)-(2.11) in the case p = q = O .  Define 
a ( A ) : =  ( Q + i A P / h ) / m  and verify P / h  = i [ a ( A ) t - a ( A ) ] / m ,  Q =  
[A~(h)~+A*a(h)]/-, [a(A),a(A>']=I.  a ( A ) q [ O , O ,  A ] = O  then leads to the 
statement. 

De$nition 2.2. @ E 2 is called a quasiclassical (or minimum uncertainty) vector with 
respect to the representation P and Q of the C C R ~  (AP)@(AQ)@= h/2 with (AX)::= 
{(@,X2@)-(@,X@)2} and ~ ~ O ~ ~ * = l .  M ( P ,  Q ) : = { O E E :  (AP),(AQ)@= h/2, 

I I @ I 1 2  = 1) denotes the set of vectors which are quasiclassical with respect to P and Q. 

Proposition 2.2. M (  P, Q )  c G( P, Q) and more specifically the following criterion holds 
V W P ,  4, A I  E G(P,  0): 

v [ p , q , h ] ~ M ( P ,  Q ) e I m A = O .  

Pro05 The proof of M ( P ,  Q)c  G(P, Q) can be found in [4]. The remaining criterion 
is an immediate consequence of equation (2.13). 

Proposition (4.1) gives relevance to the definition of 'coherent' vectors due to their 
particularly simple evolution under the dynamics P2/2m + mw2Q2/2. 

Dejinition 2.3. Let m E R, m > 0, w E R ,  w > O .  The set C(P,  Q; h/mw):= 
{"[p,  q, A = h/mw]: ( p ,  q) E R 2 } c  M ( P ,  Q )  is called the set of coherent vectors with 
respect to the representation P and Q of the CCR and P2/2m + mo2Q2/2. 

Note that M ( P ,  Q )  is obtained by forming the union of all sets of coherent vectors, 
i.e. that uAER+ C(P, Q ;  A )  = M ( P ,  Q )  holds. 

3. Bogoliubov transformations 

The notion of Bogoliubov transformations is usually introduced via the raising and 
lowering operators associated with the harmonic oscillator Hamiltonian. 

Dejinition 3.1. V v  E R ,  7 > 0 define the dimensionless operators: 
A 

P, := v P / h  0, := Q / T  a(  := (6, + iF, 1/42. 
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Lemma3.1. V ~ E R ,  v>O holds [@,,6,]=-iZ a n d [ a ( ~ ) , ~ ( q ) ~ ] = Z .  

The raising and lowering operators, which are associated with the harmonic 
oscillator Hamiltonian (with the parameters m and w ) ,  are obtained by putting 
q = ( h /  mw)”*, since V m  E R ,  m > 0,  Vw E R ,  w > 0 holds: 

P2/2m + mw2Q2/2 = h w ( a [ h / m ~ ] ” ~ ‘ a [ h / m w ] ’ ’ ~ +  Z/2}. (3.1) 

Definition 3.2. V q  ER, 77 > 0, V(s, t )  E @ *  with Is/’- It12 = 1 the definition a(  v ;  s, t )  := 
sa( q )  + tu( v)+ is called a Bogoliubov transformation. 

Lemma 3.2. V q  ER,  q > 0 and  V(s, t )  E C2 with /si2- It12 = 1 holds: 

[ a ( v ;  $9 t ) ,  a ( v ;  s, f l T I  = 1. (3.2) 

Proposition 3.1. V v  E R, q > 0 and V(s, t )  E C’ with /sI2- /ti2 = 1 the following 
equivalence holds: 

a € %  IPII = 1 a ( 7 ;  s, l )O = 0 e 36 E [O, 2 T )  
with 

ProoJ Expressing a ( 7 ;  s, t )  through P and Q leads to 

which implies the statement. 

Definition 3.3. Vz E @, V a  E R, V q  E R, 17 > 0 define the unitary operator B,( a ,  z )  on 2: 

Proposition 3.2 demonstrates that the operators B,( a, z )  implement the Bogoliubov 
~ , ( a ,  z )  := exp[- iaa(q) ’a(q) ]  exp{-ti[za(q)’a(q)’+ z * a ( q ) a ( q ) ] } .  (3.3) 

transformations unitarily. 

Proposition 3.2 [4]. Vz  E C, V a  E R, V v  E R, q > 0 holds: 

B,(a, z ) ~  = B,(a, z ) - ’  (unitarity) (3.4) 
~ , ( a ,  z ) + a ( ~ ) ~ , ( a ,  z )  = s (a ,  z ) a ( v ) +  t (a ,  z)a(q)‘  (3.5) 

(3.6) 

ProoJ Unitarity is obvious. The transformation law (3.5) can be verified by computing 
B,(a, z ) ’a (q )B , (a ,  z )  in two steps according to the decomposition of 
B,(a, z): B,(a, z )  = B,(a, O)B,(O, z ) .  First the a dependence is obtained by observing 

(This equation, familiar from a harmonic oscillator’s time evolution, follows by solving 
the first-order ordinary differential equation, which is obtained by differentiating 
B,(a, O)’a(q)B,(a, 0) with respect to a and employing the CCR for a ( q )  from lemma 
3.1.) Then in a second step the z dependence of the resulting expression 
e-’OB,(O, z ) + a (  q)B,(O, z )  can be obtained by solving the first-order ordinary differential 
equation, which results through differentiation of B,(O, Az)’a( v)B,(O, h z )  with respect 
to the real-valued auxiliary variable A for arbitrary z. The differential equation’s 
solution is uniquely determined by its initial value a ( q )  at A =0,  which is obvious 
from B,(O, 0) = I. 

& ( a ,  O ) ~ U ( T ) B , ( ~ ,  0) = e - ’^u (v ) .  
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Note that the mapping [ 0 , 2 ~ )  x C + {(s, t )  E C :  Is[’- I t [ ’ =  l}, which operates as (a, Z ) H  

( s ( a ,  z ) ,  t(a,  z ) ) ,  is one to one. Thus to each pair (s, t )  E C2, with [ s 1 2 - I f 1 2 =  1, there 
corresponds exactly one element B, which implements the Bogoliubov transformation 
of definition 3.2. Note also that the set of all Bogoliubov unitaries with fixed 77, namely 
{B,(a, z): a E [0,27r), z E C},  is independent of 77 and that a change of 77 only amounts 
to a reparametrisation of this group of operators. 

Example 3.1 illustrates the Bogoliubov transformations through the interrelation 
between the raising and lowering operators of diff erent mass and frequency parameters. 

(3.7) 

(3.8) 

(3.9) 

Proposition 3.3. Let U be one of the operators B,(a, z )  from definition 3.3. Then the 
following equivalence holds V77 E R, 77 > 0: 

U’a(7)U =  sa(^)+ ta (V ) t@ UtPU =y Im(s- t*)Q+Re(s- t * ) P  
h 
77 

(3.10) 

and 

U’QU = Re(s + t*)Q - Im(s + t * ) q 2 P /  h. (3.11) 

Proof: Express P and Q through a ( 7 )  and ~ ( 7 7 ) ~ .  

From proposition 3.3 the set of squeezing Bogoliubov transformations of [3] is 
recovered by specialising to s E R, t E R and s - t =: p > 0. Note that s + t = p-l holds. 
Proposition 3.2, together with definition 3.3, implies that the squeezing Bogoliubov 
transformations are the ones with a = 0 and Re(z) = 0. This displays lucidly that a 
harmonic oscillator Hamiltonian does not generate these transformations. 

4. Harmonic time evolution of Gaussian vectors 

Let { H (  t ) } , e R  be a one-parameter family of self-adjoint Hamiltonian operators with 
the associated family of unitary time evolution operators U (  t )  defined through 

a 
at 

ih- U ( t ) = H ( t ) U ( t )  U ( 0 )  = I. (4.1) 

DeJinition 4.1. A time evolution operator U ( t )  at a fixed time is said to squeeze a 
vector @E M ( P ,  Q )  with respect to Q (or P ) @  U ( t ) @ E  M ( P ,  Q )  and ( A Q ) u c , , a <  
(AQ)* (or W ) u W # J  < ( W a ) .  
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Definition 4.2. The harmonic oscillator Hamiltonian with real frequency and mass 
parameters w 3 0, m > 0: 

H ( w ) : =  P 2 / 2 m  + mw2Q2/2 (4.2) 

U , ( t )  := exp[-iH(w)t/h]. (4.3) 
Proposition 4.1 displays the orbits which are generated by the harmonic oscillator 

time evolution in the set of Gaussian vectors G(P, 0). 

Proposition 4.1. V t  E R, V w  ER, w 3 0 holds: 

U,(t)G(P, 0) = G(P, 0) 
U,(~)*[P, 4, A 1  =exp[is(w, t)l*[p,(t), q,(t), L ( t ) l  

p , ( t ) : = p  cos(wt)-mwq sin(wr) (4.5) 
q,( t )  := q cos(wt) + p  sin(wt)/mw (4.6) 

(4.4) 

with S(w,  t )  E [0,27r) and 

Re A +i{Im A cos(2wt)+[l -(mw/h)’lA12](h/2mw) sin(2wt)} 
[cos(wt)-(mw/h) Im A sin(wr)]’-t(mw/h)’(Re A)’  &’(ut) * 

A,( t )  := (4.7) 

Prooj The time dependence of p w (  t )  and qw( t )  follows from commuting U,( t )  through 
exp[-i(qP-pQ)/h]. This can be done easily by using the solution of Heisenberg’s 
operator equations of motion, which can be extracted from proposition 3.3 by putting 
z = 0. A,( t )  can be derived by acting on the defining equation (2.4) for Y[O, 0, A ]  with 
U,( t ) .  Commuting U,( t )  through Q+iAP/h again can be done with help of the 
solution of Heisenberg’s operator equations of motion and leads to the stated result. 

Observe that A , ( O ) = A ,  p , ( O ) = p ,  q,(O)=q indeed holds. The limiting case wJ.0 
reproduces the free Gaussian wavepacket correctly: Ao( t )  = A + ith/m, po( t )  = p ,  qo( 1) = 
q+pt/m,  such that, according to proposition 2.1, the position variance is given by 
(AQ):= [(Re A)’+(Im A + th/m)’]/2 Re A. The free wavepacket contracts before t = 
-m Im A / h  and spreads afterwards. The packet is quasiclassical at t = -m Im A / h  
only. For Im A <O, which can always be made true by a shift of the timescale, these 
orbits have been named ‘contractive’ and have been employed in the modelling of 
position measurements for a free quantum [6]. 

Further notice that A , ( t )  is insensitive to p and q. One may say that the internal 
motion of the Gaussian wavepacket decouples from the external one. That A , ( t )  is 
periodic in t with half of the oscillator’s period deserves some comment. The parity 
conservation of U,( t )  and the fact that 9 [ 0 , 0 ,  A ]  has even parity, as is obvious from 
example 2.2, implies that only even-parity eigenvectors of H( U ) ,  corresponding to the 
eigenvalues [ h w ( 2 n  + f ) I n E h i ( , ,  yield non-zero scalar products with Y[O, 0, A ] .  Thus only 
these eigenvectors contribute to an expansion of zIr[O, 0, A ]  into the eigenbasis of H ( w ) ,  
which explains the period of A,. 

From the formula for (AP)p,q,A(AQ)p.y,A given by proposition 2.1 and the one for 
A,( t )  in proposition 4.1 the times at which ‘P[ p , (  t ) ,  qw( t ) ,  A,(r ) ]  is quasiclassical can 
be read off to be as stated in corollary 4.1. 

Corollary 4.1. V( p ,  q)  E R2,  VA E @, Re A > 0 holds the equivalence: 

h U,(t)Y[p, q , A ] E  M(P, Q ) G I m  A c 0 ~ ( 2 w t ) + [ l - ( m w / h ) ’ ~ A ~ ~ ] - s i n ( 2 o t ) = O .  
2 mw 
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Three exhaustive cases of initial conditions need a separate discussion. First the trivial 
case A = h /  mw, which corresponds to choosing a coherent vector with respect to H (  w )  
as the initial condition at t = 0. In this case follows, V t  E R: 

The second case is Im A # 0 (and therefore A # h lmw) ,  which corresponds to choosing 
a non-quasiclassical vector as initial condition. Here in the half open ?-interval 
[ 0 , 2 ~ / w )  four and only four instants t of time exist with tan(2wt)= 
-1m A / { [ l  - (mw/h)21AIZ]h /2m~}  such that U,(t)P[p, q, A ] €  M ( P ,  Q )  follows. 
Finally, there is the case A # h /  mw with Im A = 0, which corresponds to choosing a 
coherent vector with respect to H ( w ’ ) ,  with w # U ‘ ,  as the (quasiclassical) initial 
condition, and into which case 2 can be transformed by shifting the timescale and 
determining w t  properly in terms of A and w. This last case, therefore, is the general 
generic case. Here in the t interval [ 0 , 2 n / w )  again exactly four instants t of time 
exist, with sin(2wt) = 0, such that U,( t ) 9 [  p ,  q, A ]  E M (  P, Q )  follows. These times are 
ut E (0, ~ / 2 ,  T, 3 ~ 1 2 ) .  The position and momentum variances for this case, to be read 
off from propositions 2.1 and 4.1, are listed in example 4.1. A simple alternative 
derivation of example 4.1 can be drawn from the solutions of Heisenberg’s operator 
equations of motion for U,(t)tPUu(t) and U,(t)’QUu(t) as they are implicit in 
proposition 3.3. 

Example 4.1. Vhlmw‘ER,  O <  h/mw‘, V ( p ,  q ) E R 2 ,  V ~ E R ,  O < w  holds: 

( A p ) 2 V , ~ t ) ~ [ p ,  q. * / m u ’ ]  =ihmw’{l+ [ ( w / w ’ ) 2 -  11 s i n 2 ( ~ t ) )  (4.8) 

(4.9) 

Note that for w ‘ < w  the position variance decreases below its starting value of 
(AQ)Z,ax= h/2mwt at t = 0 ,  which is also its maximum value, to attain its minimum 
value of 

at time wt = ~ / 2  before it returns to the starting value at w t  = T and the process repeats 
periodically. Note that if and only if the position variance is in its minimum or 
maximum, then (AP)(AQ) = h / 2  holds. Therefore the harmonic oscillator dynamics 
with frequency w evolves the coherent vectors with respect to the harmonic oscillator 
Hamiltonian with smaller frequency parameter w ’  < w into relatively Q-squeezed ones 
at the times wt = (2n + 1 ) ~ / 2  with n E H. 

5. Harmonic oscillator with a frequency jump 

Finally, the question of how the orbits of proposition 4.1 could possibly be realised 
is touched upon in this section. Consider a harmonic oscillator Hamiltonian with the 
frequency being a function of time, which jumps at t = 0 from w t  to w, then at time 
T > 0 back to U ’ ,  and is constant otherwise. The dynamical orbits induced by this 
time-dependent Hamiltonian are of the type considered in example 4.1. If the ground- 
state vector 9[0, 0, h lmo’]  of H ( w ’ )  is assumed to be realised at t = 0, then this vector 
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(up to a phase) is realised for all negative times, while for positive times t between 0 
and T the vector (up to a phase) is given by Y[O, 0, A,( t ) ]  with the starting value 
A = h/mw’. For f B T the curve is given (up to a phase) by Y[O, 0, A,,(t - T)] with 
the starting value A,,(O) = A,( T). For t E [0, TI the momentum and position variances 
are as stated in example 4.1. An important observable quantity of * [ O ,  0, A,( T)], 
namely the occupation probability of the excited levels of H ( w ’ ) :  

P,., ,(wT) := 1 - l(Y(O,O, A = h/mw’), Y[O,O, A,( T)])1’ (5.1) 

as a function of the perturbation’s duration T, can be read off from proposition 5.2. 

Proposition 5.2. V m  E R ,  m > 0, VW’E R, w ‘ >  0, Vw E R ,  w > 0, VTE R, with T:= w T ,  
A := h/mw‘ and A,( T) as defined in proposition 4.1, holds: 

I(Y(O,O, A = h / m w ‘ ) ,  Y[O, 0, A,(T)])I2 = [ l  + a ( w ’ / w  - w / w ’ ) ’  sin’ ~ 1 - l ’ ~ .  (5.2) 

Prooj Use the x-space representation of Y[O, 0, A ]  to compute the scalar product via 
integration. This yields equation (5.3): 

I(W, 0, = h/mw’), W O ,  0, A,( T)I)l2 

)“2.  (5.3) 
[cos’ T + ( w ’ / w ) ~  sin’71 

(1+cos2 ~ + ( w ’ / w ) ~ s i n ’  7)’+cos2 rsin’ ~ ( W ’ / W - ~ / W ’ ) ~  
= 2 (  

The denominator can be further simplified as follows: 

(1+cos2 r+(w‘/w)2sin2 T ) ’ + C O S ~  7sin27 

=1+2[cos2  sin^ .r]+[cos2 7+(w’/w)’sin2 TI’ 

2 

+ cos2 r sin2 r ($ - 5)  . 
Check now the relation 

which implies that the denominator can be written as 

[cos2 ~ + ( w ’ / ~ ) ~ s i n ~  r]{2+[cos2 ,r+(w’/w)’sin2 T]+[COS’ T+(w/w’)’  sin2 TI}. 

From this then equation (5.2) follows immediately. 

Note that the excitation probability is 0 for T = 0 and increases to reach its maximum 
value of 1 - 2 ( w / w ’ + w ’ / w ) - ’ B O  at w T =  ~ / 2 ,  then returns to the value 0 at U T =  T 

and repeats this process periodically. Observe also the surprising symmetry: P,./,( 7) = 

As expected intuitively, the energy transfer into the system through an instantaneous 
frequency jump at t = 0 is positive if the oscillator frequency is increased (negative if 
the frequency drops). It is given by 

P,/,47). 

E ( t E  [0, TI) - E ( t E  (-03,Ol) 

:= ( “ [ O ,  0, hlmw’l, { H ( w )  - H ( w ’ ) ) Y [ O ,  0, h lmw‘])  
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